On the chromatic symmetric function of a tree
نویسندگان
چکیده
Stanley defined the chromatic symmetric function X(G) of a graph G as a sum of monomial symmetric functions corresponding to proper colorings of G, and asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley’s question by asking what invariants of a tree T can be recovered from its chromatic symmetric function X(T ). We prove that the degree sequence (δ1, . . . ), where δj is the number of vertices of T of degree j, and the path sequence (π1, . . . ), where πk is the number of k-edge paths in T , are given by explicit linear combinations of the coefficients of X(T ). These results are consistent with an affirmative answer to Stanley’s question. We briefly present some applications of these results to classifying certain special classes of trees by their chromatic symmetric functions. Résumé. Stanley a défini la fonction symétrique chromatique X(G) d’un graphe G par une somme de fonctions symétriques monomials qui correspondent aux colorations propres de G, et il a demandé si un arbre est déterminé jusqu’à l’isomorphisme par sa fonction symétrique chromatique. Nous approchons la question de Stanley en demandant quels invariants d’un arbre T peut être récupéré de sa fonction symétrique chromatique X(T ). Nous prouvons que le suite des degrés (δ1, . . . ), où δj est le nombre des sommets de T de degré j, et le suite des chemins (π1, . . . ), où πk est le nombre de chemins de longueur k, sont données par des combinaisons lineaires explicites des coefficients X(T ). Ces résultats sont conformés à une réponse affirmative à la question de Stanley. Nous présentons brièvement quelques applications de ces résultats à classifier certaines classes spéciales des arbres par ses fonctions symétriques chromatiques. Introduction Let G be a simple graph with vertices V (G) and edges E(G), and let n = #V (G) (the order of G). We assume familiarity with standard facts about graphs and trees, as set forth in, e.g., [11, Chapters 1–2]. In particular, a coloring of G is a function κ : V (G) → {1, 2, . . .} such that κ(v) 6= κ(w) whenever the vertices v, w are adjacent. Stanley [7] defined the chromatic symmetric function of G as X(G) = X(G;x1, x2, . . . ) = ∑
منابع مشابه
On distinguishing trees by their chromatic symmetric functions
Let T be an unrooted tree. The chromatic symmetric function XT , introduced by Stanley, is a sum of monomial symmetric functions corresponding to proper colorings of T . The subtree polynomial ST , first considered under a different name by Chaudhary and Gordon, is the bivariate generating function for subtrees of T by their numbers of edges and leaves. We prove that ST = 〈Φ,XT 〉, where 〈·, ·〉 ...
متن کاملJust chromatic exellence in fuzzy graphs
A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...
متن کاملSe p 20 06 SUBGRAPH POSETS , PARTITION LATTICES , GRAPH POLYNOMIALS AND RECONSTRUCTION
Two objects of fundamental importance in the study of graph polynomials are the poset of induced subgraphs of a graph and the lattice of its connected partitions. In my earlier paper I showed that several invariants of a graph can be computed from the isomorphism class of its poset of non-empty induced subgraphs, (that is, subgraphs themselves are not required). In this paper I will prove that ...
متن کاملChromatic classical symmetric functions
In this note we classify when a skew Schur function is a positive linear combination of power sum symmetric functions. We then use this to determine precisely when any scalar multiple of a skew Schur function is the chromatic symmetric function of some graph. As a consequence we prove that of the classical bases for symmetric functions only certain scalar multiples of the elementary symmetric f...
متن کاملLollipop and Lariat Symmetric Functions
We compute an explicit e-positive formula for the chromatic symmetric function of a 3 lollipop graph, Lm,n. From here we deduce that there exist countably infinite distinct e-positive, and 4 hence Schur-positive, bases of the algebra of symmetric functions whose generators are chromatic 5 symmetric functions. Finally, we resolve 6 conjectures on the chromatic symmetric function of a 6 lariat gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006